科普之家

当前位置:首页前沿 > 你可能想不到,紫外线其实也有温柔的一面……

你可能想不到,紫外线其实也有温柔的一面……

时间:2022-07-05 04:11:31 来源:科普之家 作者:科普中国 栏目:前沿 阅读:29

前几天小编在摸鱼时偶然刷到了这样一条热搜:

图 | 微博

在感叹祖国日益强大的同时,小编也不免疑惑:光还能制成疫苗?这是什么高端的黑科技?

都说好奇心害死猫是人类进步的源泉,今天小编就本着物理人寻根问底的精神,来给大家好好解读一下这款所谓的“黑科技”。

人体安全消毒仪

热搜中所述的“光疫苗”,其实是一款能发出222 nm特定波长紫外线的消毒仪。据报道它能针对病毒细菌等微生物,尤其是新型冠状病毒,实现99.99%的杀菌效果。

人体安全消毒仪 | 参考文献 [7]

看到这里小编不禁吐槽:不就是紫外线消毒仪嘛,和疫苗混为一谈真的好吗?

疫苗(以灭活疫苗为例)是将病原微生物灭活后保留全微生物体注射进入人体,促使人体产生针对该病原体的抗体,是一种获得性免疫。

而紫外线消毒是体外细菌病毒消杀,和疫苗的原理完全不一样好伐。

不过对比我们日常使用的紫外线消毒产品,这款消毒仪还是有其先进之处的。

平常我们用来消毒的紫外线灯,发出的紫外线波长约为253.7 nm,而且消毒过程中需要人远离光源才行。

而这款消毒仪发出的222 nm紫外线,可以做到开启后人无需离开,实现了“人机共存,实时消毒”。

为什么这款消毒仪能具备这样的特异功能?这还得从紫外线本身开始说起……

“紫外线”本线

紫外线(Ultraviolet,简称UV)大家都不陌生,它是波长在10 - 400 nm之间的电磁波,太阳光中就含有部分紫外线。

电磁波谱丨 Wikimedia Commons, Nl74, Inductiveload, NASA, Translated by Tonys / CC BY-SA 3.0 (https://creativecommons.org/licenses/by-sa/3.0)

生活中我们常把紫外线分为UVA、UVB和UVC三类。

UVA为波长介于320 - 400 nm的紫外线,太阳光中的UVA可穿透大气层,甚至到达皮肤的真皮层,造成晒黑,所以朋友们平时出门一定要做好防晒……

UVB为波长介于280 - 320 nm的紫外线,可到达皮肤表层,引发晒伤。太阳光中的大部分UVB会被臭氧层吸收,故只有很少的一部分UVB能到达地球表面。

UVC为波长介于100 - 280 nm的紫外线,此范围的紫外线能量较高,具有一定的危险性,所幸臭氧层可以帮助我们完全阻隔UVC。可见臭氧层的重要性……

紫外线渗透到皮肤的各个层次 | 参考资料[2]

除了此外,我们还将波长介于10 - 200 nm的紫外线称为“真空紫外线”,由于其会被空气中的氧强烈地吸收。所以这种紫外线只有在无氧状态下才能使用,应用于一些特殊的工艺上。

日常の紫外线消毒

日常生活中我们使用的紫外线灯大多是普通直管热阴极低压汞灯,通电后可以产生足够强度的波长为253.7 nm的紫外线,在进行了一定时长的辐照后,就能达到99 - 99.9%的消杀效果。

那紫外线是如何起到消杀作用的呢?为什么偏偏要用253.7 nm的紫外线呢?

科学家通过大量实验发现,细菌病毒体内的DNA / RNA会吸收部分UVC波段的紫外线。从下图中不难看出,在260 nm附近吸收最为强烈。

DNA / RNA对紫外线的吸收 | 参考资料[3]

大量吸收紫外线的DNA / RNA,其螺旋结构就会被破坏,从而使机体的新陈代谢机能出现障碍,同时会丧失遗传能力。当辐照强度和时间都充足时,细菌病毒就会失活。

DNA结构会因紫外线辐照而被破坏 | Pixabay

因此,只要光源满足:

能发出波长在260 nm附近的紫外线

光强足够强

所用材料成本低,制造方便

就可以很方便地应用于日常生活杀菌消毒。

综合比较之后,低压汞灯担起了这个重任,因为其能发射强度较大的波长为253.7 nm(满足在260 nm附近)的紫外线,同时汞的使用成本低,且低压汞灯的制造相对简单。

这里顺便解释一下为什么紫外线是不可见光,但我们却能看到紫外线灯发出的光。

低压汞灯在通电后,紫外波段和可见光波段中的蓝光、紫光都会被激发,所以其在发出紫外线的同时,也会同时发出一些波长的蓝光和紫光,于是就形成了下面的图景。

紫外线灯丨 Wikimedia Commons, Coleopter / CC BY-SA 4.0 (https://creativecommons.org/licenses/by-sa/4.0)

需要注意的是,253.7 nm的紫外线能量较高,而且可透进皮肤,如果人体长时间暴露于紫外线灯下,皮肤、眼睛都会受到伤害,轻则电光性眼炎、皮肤灼伤,重则白内障、皮肤癌。所以紫外线灯开启时,人一定要到紫外线灯照不到的地方等待。

222 nm呢?

人与开启的紫外线灯不可兼得,这可能是紫外线消毒法一个比较大的缺憾。

那有没有办法弥补这个缺憾呢?哎,今天的主角终于要登场了。

文章开头处我们说到,222 nm的紫外线能够起到杀菌消毒作用而基本不对人体产生伤害。这是怎么做到的呢?

222 nm紫外线让细菌病毒失活的原理和253.7 nm是一样的,只不过换了个波段而已。

在前面讲DNA / RNA对紫外线的吸收时,我们可以从吸收光谱中看到,除了260 nm附近的区域,在220 nm附近,也有一个吸收度上升的趋势。

虽然没有260 nm那里那么高,但如果给予足够的光强和辐照时长,按道理也是能起到消杀效果的。

科学家通过对比实验,测试了253.7 nm和222 nm紫外线消杀能力。

两种紫外线的消杀能力对比 | 参考资料[5]

可以发现两种紫外线的消杀能力几乎不相上下,在低强度时222 nm甚至超越 253.7 nm。

那222 nm是怎么做到对人体基本无害的呢?明明波长更短能量更高了呀?

这就不能单从能量的角度去考虑了,还要考虑波长变短后紫外线穿透能力的变化。

从前面UVA、UVB、UVC的介绍里我们可以看出,当紫外线的波长变短时,其穿透能力也在减弱。

所以222 nm的紫外线相比254 nm的紫外线在皮肤中的穿透深度就浅了许多,对人体的伤害自然就小了

科学家们通过对比实验,让一部分雄性无毛小鼠暴露于222 nm的紫外线中,一部分暴露于253.7 nm的紫外线中,一部分不暴露,保证紫外线光强和辐照时间一致,在暴露结束48小时后观察其皮肤发生的变化。

三组小鼠经历辐照后皮肤的变化 | 参考资料[5]

可以发现经历222 nm紫外线辐照几乎与无辐照没区别,而253.7 nm的辐照让皮肤受损严重。

那222 nm的紫外线是如何产生的呢?这里选用氯化氪(KrCl)作为光源,同时为了过滤其余波长的光,单独发出222 nm这一个波长,还会搭配使用滤波片。

未使用和使用滤波片的氯化氪光谱 | 参考资料[5]

能实现民用吗?

既然这个222 nm的消毒仪如此强大,那在如今疫情防控常态化的大背景下,能否能实现民用呢?

据报道,除了此次东京奥运会,某些地区的一些医院也已经安排上了,而且反响强烈。

因为222 nm的紫外线可用于有人的场景,对于人员密度高、人流量大的场所,以及医院(尤其发热门诊)这样的高风险场所具有特别的优势。

不过由于光只能沿直线传播,所以在光照不到的地方,消杀效果会比较有限,这也是紫外线消毒法的一个短板。

目前研究人员正在积极研发尽可能克服短板、并且能应用于更多场景下的民用消毒仪。相信未来的某一天,升级版的消毒仪会走进寻常百姓家,为抗疫做出更大的贡献!

是不是没有想到一个小小的消毒仪居然隐藏了如此丰富的知识?

小编也从中悟出了一个道理:摸鱼+思考,收获少不了

参考文献

[1] 紫外线 - 维基百科

[2] Pérez-Sánchez A, Barrajón-Catalán E, Herranz-López M, et al. Nutraceuticals for skin care: A comprehensive review of human clinical studies[J]. Nutrients, 2018, 10(4): 403.

[3] Kiyoshi Yoshino,姜伟.紫外线杀菌的原理和最新应用[J].中国照明电器,2005(04):28-31.

[4] Meulemans C C E. The basic principles of UV–disinfection of water[J]. 1987.

[5] Buonanno M, Ponnaiya B, Welch D, et al. Germicidal efficacy and mammalian skin safety of 222-nm UV light[J]. Radiation research, 2017, 187(4): 493-501.

[6] 什么“秘密武器”保障中国奥运代表团零感染?距离民用还有多远?https://finance.sina.com.cn/wm/2021-08-16/doc-ikqcfncc3145499.shtml

[7]https://news.sina.com.cn/c/2021-08-14/doc-ikqciyzm1437644.shtml

作者:Eric

编辑:Eric

本文经授权转载自公众号中科院物理所

本文链接:https://www.bjjcc.cn/kepu/15351.html,文章来源:科普之家,作者:科普中国,版权归作者所有,如需转载请注明来源和作者,否则将追究法律责任!

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

文章评论